Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Commun ; 14(1): 5579, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696824

RESUMO

Immunological memory is critical for immune protection, particularly at epithelial sites, which are under constant risk of pathogen invasions. To counter invading pathogens, CD8+ memory T cells develop at the location of infection: tissue-resident memory T cells (TRM). CD8+ T-cell responses are associated with type-1 infections and type-1 regulatory T cells (TREG) are important for CD8+ T-cell development, however, if CD8+ TRM cells develop under other infection types and require immune type-specific TREG cells is unknown. We used three distinct lung infection models, to show that type-2 helminth infection does not establish CD8+ TRM cells. Intracellular (type-1) and extracellular (type-3) infections do and rely on the recruitment of response type-matching TREG population contributing transforming growth factor-ß. Nevertheless, type-1 TREG cells remain the most important population for TRM cell development. Once established, TRM cells maintain their immune type profile. These results may have implications in the development of vaccines inducing CD8+ TRM cells.


Assuntos
Células T de Memória , Linfócitos T Reguladores , Linfócitos T CD4-Positivos , Diferenciação Celular , Linfócitos T CD8-Positivos
2.
Proc Natl Acad Sci U S A ; 119(34): e2202144119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969785

RESUMO

The metabolic capacity of many cells is tightly regulated and can adapt to changes in metabolic resources according to environmental changes. Tissue-resident memory (TRM) CD8+ T cells are one of the most abundant T cell populations and offer rapid protection against invading pathogens, especially at the epithelia. TRM cells metabolically adapt to their tissue niche, such as the intestinal epithelial barrier. In the small intestine, the types of TRM cells are intraepithelial lymphocytes (IELs), which contain high levels of cytotoxic molecules and express activation markers, suggesting a heightened state of activation. We hypothesize that the tissue environment may determine IEL activity. We show that IEL activation, in line with its semiactive status, is metabolically faster than circulating CD8+ T cells. IEL glycolysis and oxidative phosphorylation (OXPHOS) are interdependently regulated and are dependent on rapid access to metabolites from the environment. IELs are restrained by local availability of metabolites, but, especially, glucose levels determine their activity. Importantly, this enables functional control of intestinal TRM cells by metabolic means within the fragile environment of the intestinal epithelial barrier.


Assuntos
Linfócitos T CD8-Positivos , Linfócitos Intraepiteliais , Células T de Memória , Linfócitos T CD8-Positivos/citologia , Mucosa Intestinal/citologia , Intestinos/citologia , Linfócitos Intraepiteliais/citologia , Ativação Linfocitária , Células T de Memória/citologia , Fosforilação Oxidativa
3.
Oncologist ; 26(9): e1619-e1632, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34018280

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients with cancer show worse outcomes compared with patients without cancer. The humoral immune response (HIR) of patients with cancer against SARS-CoV-2 is not well characterized. To better understand it, we conducted a serological study of hospitalized patients with cancer infected with SARS-CoV-2. MATERIALS AND METHODS: This was a unicentric, retrospective study enrolling adult patients with SARS-CoV-2 admitted to a central hospital from March 15 to June 17, 2020, whose serum samples were quantified for anti-SARS-CoV-2 receptor-binding domain or spike protein IgM, IgG, and IgA antibodies. The aims of the study were to assess the HIR to SARS-CoV-2; correlate it with different cancer types, stages, and treatments; clarify the interplay between the HIR and clinical outcomes of patients with cancer; and compare the HIR of SARS-CoV-2-infected patients with and without cancer. RESULTS: We included 72 SARS-CoV-2-positive subjects (19 with cancer, 53 controls). About 90% of controls revealed a robust serological response. Among patients with cancer, a strong response was verified in 57.9%, with 42.1% showing a persistently weak response. Treatment with chemotherapy within 14 days before positivity was the only factor statistically shown to be associated with persistently weak serological responses among patients with cancer. No significant differences in outcomes were observed between patients with strong and weak responses. All IgG, IgM, IgA, and total Ig antibody titers were significantly lower in patients with cancer compared with those without. CONCLUSION: A significant portion of patients with cancer develop a proper HIR. Recent chemotherapy treatment may be associated with weak serological responses among patients with cancer. Patients with cancer have a weaker SARS-CoV-2 antibody response compared with those without cancer. IMPLICATIONS FOR PRACTICE: These results place the spotlight on patients with cancer, particularly those actively treated with chemotherapy. These patients may potentially be more vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, so it is important to provide oncologists further theoretical support (with concrete examples and respective mechanistic correlations) for the decision of starting, maintaining, or stopping antineoplastic treatments (particularly chemotherapy) not only on noninfected but also on infected patients with cancer in accordance with cancer type, stage and prognosis, treatment agents, treatment setting, and SARS-CoV-2 infection risks.


Assuntos
COVID-19 , Neoplasias , Anticorpos Antivirais , Humanos , Imunidade Humoral , Imunoglobulina G , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Estudos Retrospectivos , SARS-CoV-2
4.
Eur J Immunol ; 50(12): 2025-2040, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33084029

RESUMO

SARS-CoV-2 has emerged as a human pathogen, causing clinical signs, from fever to pneumonia-COVID-19-but may remain mild or asymptomatic. To understand the continuing spread of the virus, to detect those who are and were infected, and to follow the immune response longitudinally, reliable and robust assays for SARS-CoV-2 detection and immunological monitoring are needed. We quantified IgM, IgG, and IgA antibodies recognizing the SARS-CoV-2 receptor-binding domain (RBD) or the Spike (S) protein over a period of 6 months following COVID-19 onset. We report the detailed setup to monitor the humoral immune response from over 300 COVID-19 hospital patients and healthcare workers, 2500 University staff, and 198 post-COVID-19 volunteers. Anti-SARS-CoV-2 antibody responses follow a classic pattern with a rapid increase within the first three weeks after symptoms. Although titres reduce subsequently, the ability to detect anti-SARS-CoV-2 IgG antibodies remained robust with confirmed neutralization activity for up to 6 months in a large proportion of previously virus-positive screened subjects. Our work provides detailed information for the assays used, facilitating further and longitudinal analysis of protective immunity to SARS-CoV-2. Importantly, it highlights a continued level of circulating neutralising antibodies in most people with confirmed SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Soroepidemiológicos , Fatores de Tempo
5.
Nat Immunol ; 21(7): 766-776, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424367

RESUMO

Tissue-resident memory T (TRM) cells, functionally distinct from circulating memory T cells, have a critical role in protective immunity in tissues, are more efficacious when elicited after vaccination and yield more effective antitumor immunity, yet the signals that direct development of TRM cells are incompletely understood. Here we show that type 1 regulatory T (Treg) cells, which express the transcription factor T-bet, promote the generation of CD8+ TRM cells. The absence of T-bet-expressing type 1 Treg cells reduces the presence of TRM cells in multiple tissues and increases pathogen burden upon infectious challenge. Using infection models, we show that type 1 Treg cells are specifically recruited to local inflammatory sites via the chemokine receptor CXCR3. Close proximity with effector CD8+ T cells and Treg cell expression of integrin-ß8 endows the bioavailability of transforming growth factor-ß in the microenvironment, thereby promoting the generation of CD8+ TRM cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Comunicação Celular/imunologia , Diferenciação Celular/imunologia , Memória Imunológica , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/transplante , Coccidiose/imunologia , Coccidiose/parasitologia , Modelos Animais de Doenças , Eimeria/imunologia , Feminino , Humanos , Cadeias beta de Integrinas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Receptores CXCR3/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/transplante , Fator de Crescimento Transformador beta/metabolismo
6.
Bio Protoc ; 8(24)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31032380

RESUMO

Eimeria vermiformis is a tissue specific, intracellular protozoan that infects the murine small intestinal epithelia, which has been widely used as a coccidian model to study mucosal immunology. This mouse infection model is valuable to investigate the mechanisms of host protection against primary and secondary infection in the small intestine. Here, we describe the generation of an E. vermiformis stock solution, preparation of sporulated E. vermiformis to infect mice and determination of oocysts burden. This protocol should help to establish a highly reproducible natural infection challenge model to study immunity in the small intestine. The information obtained from using this mouse model can reveal fundamental mechanisms of interaction between the pathogen and the immune response, e.g., provided by intraepithelial lymphocytes (IEL) at the basolateral site of epithelial cells but also a variety of other immune cell populations present in the gut.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA